Title
Authors
Abstract
Leyva, M*; French, L**; Marquetti, MC*; Montada, D *; Tiomno, O***; Tacoronte, JE ****
*Instituto de Medicina Tropical “Pedro Kourí” (IPK) Autopista Novia del Mediodía Km 6 ½ Apartado 601, La Lisa, Ciudad de La Habana Cuba
**Centro de Investigaciones Químicas (CIQ) Universidad Autónoma del Estado de Morelos Mexico
***Centro de Investigaciones Químicas (CIQ). Infanta y Palatino .Plaza de la Revolución Ciudad de la Habana Cuba
****Proyecto Prometeo, SENESCYT, Universidad Central del Ecuador, Facultad de Ingeniería Química, Quito, República del Ecuador
Introducción La implicación de los mecanismos de resistencia sobre la actividad insecticida de las plantas es un tema que es necesario estudiar, cuando se valora la posibilidad de utilizar productos naturales para el control de insectos. El objetivo de este trabajo fue determinar la actividad de las enzimas de acción metabólica en cepas de Ae. aegypti expuestas y no expuestas a un aceite de trementina modificado(ATM). Materiales y Métodos Se utilizaron 2 cepas de Ae aegypti resistente y susceptible a insecticidas. Se expusieron a la CL90 del ATM, transcurridos 24 horas se tomó una muestra de las sobrevivientes las que fueron colocadas individualmente en placas de 96 pocillos para la realización de las pruebas bioquímicas (Glutation S transferasa, a y b esterasa y Citocromo P450 monoxigenasas) Resultados Los valores de actividad de las b-esterasa y MFO oxidasa no variaron en la cepa susceptible seleccionada con la CL90, sin embargo en la cepa resistente, ocurrió una disminución de los valores de estas actividades. La actividad de las GST se inhibió en la cepa susceptible y se incrementó ligeramente para la cepa resistente. Conclusiones En este trabajo se demostró que las enzimas de acción metabólica no constituyen un mecanismo de resistencia en las larvas que sobrevivieron a la exposición del ATM. Este resultado unido a los efectos biológicos de este aceite, como actividad ovicida, larvicida, pupicida y teratogénica, permite recomendar su uso como un método de control biológico alternativo contra Aedes aegypti.
References
Araujo EC, Silveira ER, Lima MA, Neto MA et al . Insecticidal activivity and chemical composition of volatile oils from Hyptis martisii Benth. J. Agric. Food. Chem. 2003; 51 (130): 3260-2.
Babu SR, Subrahmanyam B Bio-potency of serine proteinase inhibitors from Acacia senegal seeds on digestive proteinases, larval growth, and development of Helicoverpa armigera (Hübner). Pest Biochem Physiol 2010;98:349–358
Bisset, J. A. 2002. Uso correcto de insecticidas: control de la resistencia. Rev Cubana Med Trop, 54, 202 19.
Bisset, JA Rodriguez MM, Ricardo Y, Ranson H, Perez O, Moya M. & Vazquez A.. Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008. Med Vet Entomol 2011;25: 233-9.
Byeoung-Soo P, Won-Sik C, Jeong-Han K, Kap-Ho K, SPNG-Eun L. Monoterpenes from Thyme (Thymus vulgaris) as potencial mosquito repellents. J. Am. Mosq. Control Association 2005; 21 (1):80-83.
Brogdon WG & Mcallister JC.. Insecticide resistance and vector control. Emerg Infect Dis 1998;4, 605-13.
Blenau W, Rademacher E, Baumann A: Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets? Apidologie 2012, 43:334–347
Bloomquist, J.R. Ion channels as targets for insecticides. Annu. Rev. Entomol. 1996;41, 163–190
Carvalho AF, Melo VM, Carveiro AA, Machoo MI, Beantim MB, Rabelo EF. Larvicidal activty of the essential oil fro Lippia sidoide against Aedes aegypti. Mem. Oswaldo Cruz 2003; 98 (4): 569-71.
Castex M, Montada D, González I, Estevez S, San Blas O, González R. Efectividad del tratamiento residual (Perifocal) con Ficam (Bendiocarb) 80 WP en el control del mosquito Aedes aegypti en el Área de Salud XX Aniversario A, en Santa Clara. Cuba Rev Cubana Med Trop 2008;60(1):61 -62
Cordeiro Agra-Neto A, Henrique Napoleão T , Viana Pontual E, Diniz de Lima Santos N , Andrade Luz L, Fontes de Oliveira CM, Varjal de Melo-Santos MA, Breitenbach Barroso Coelho LC, Amaral Ferraz Navarro DM, Guedes Paiva PM. 2013 Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate Parasitol Res DOI 10.1007/s00436-013-3640-8
Chung IM, Song HK, Yeo MA, Moon HI. Composition and immunotoxicity activity of major essential oils from stems of Allium victorialis L. var. platyphyllum Makino against Aedes aegypti L. Immunopharmacol Immuno toxicol 2011; 33(3):480-83.
French L. Estudio de la resistencia a insecticidas en los estadios de larva y adulto de Aedes aegypti (Diptera: Culicidae) Tesis para optar por el grado de Master en Entomología medica y Control de Vectores 2012
French L Rodríguez Coto MM, Bisset Lazcano JA, Ricardo Leyva Y, Gutiérrez Bugallo G, Fuentes López I. Actividad incrementada de las enzimas citocromo P450 monooxigenasas en cepas cubanas de Aedes aegypti de referencia, resistentes a insecticidas Rev Cubana Med Trop.2013: 65(3)
Hafeez F Akram W, Shaalan EA. Mosquito larvicidal activity of citrus limonoids against Aedes albopictus. Parasitol. Res. 2011; 109 (1):221-229.
Hemingway, J. & Georghiou, G. P.. Studies on the acetylcholinesterase of Anopheles albimanus resistant and susceptible to organophosphate and carbamate insecticides. Pestic. Biochem. Physiol1983; 19:167–171.
Hemingway J H, Mccarroll L, Ranson R.. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology 2004:34: 653–665
IRAC 2012 Web site at www.irac-online.org. .visited date March5th, 2012
Joffe T, Gunning RV, Allen GR, Kristensen M, Alptekin S, Field LM, Moores GD:Investigating the potential of selected natural compounds to increase the potency of pyrethrum against houseflies Musca domestica (Diptera: Muscidae). Pest Manag Sci 2012, 68:178–184.
Karr LL, Cotas JR. Insecticidal properties of d-limonelene. J Pest. Sci. 1998;13: 287-90.
Koodalingam A, Mullainadhan P, Arumugam M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito Aedes aegypti (Diptera Culicidae). Acta Tropica 2011;118: 27-36
Larson RT, Lorch JM, Pridgeon JW, Becnel JJ, Clarck GG, Lan Q The biological activity of α-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. J Med Entomol 2010;47:249–257
Lassiter MT ,Apperson CS, Roe RM. Juvenile hormone metabolismduringthe fourth stadium and pupal stageof the southern house mosquitoes Culex quinquefasciatus Say J Insect Physiol1995;41: 869-876.
Li X, Schuler M, & Berenbaum MR.. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol2007; 52:231-53.
Leyva M, Marquetti MC, French L, Montada D,Tiomno O ,Tacoronte JE. Efecto de un aceite de trementina obtenido de Pinus tropicalis Morelet 1851 sobre la biología de una cepa de Aedes (Stegomyia) aegypti Linnaeus 1762 resistente a insecticidas. Anales de Biología 2013;35: (75-88)
Lucia A, Gónzalez Audino P, Saccacini E, Licastro S, Zerba E, Masuh H Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Ae aegypti larvae J. Am. Mosq. Control Assoc. 2007; 23:293-303
McLaughlin LA, Niazi U, Bibby J, David JP, Vontas J, Hemingway J, Ranson H,Sutcliffe MJ, Paine MJ: Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2. Insect Mol Biol 2008, 17:125–135.
Macedo MLR, Freire MGM, Silva MBR, Coelho LCBB (2007) Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus, and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol A 146:486–498
Mathew J, Thoppil JE. Chemical composition and mosquito larvicidal activities of Salvia essential oils. Pharm. Biol. 2009; 49(5):456-463.
Melo-Santos MAV, Varjal-Melo JJM, Araújo AP, Gomesa TCS, Paivaa MHS, Regis LN, Furtado AF, Magalhaes T, Macoris MLG, Andrighetti MTM & Ayres CFJ. Resistance to the organophosphate temephos: Mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Tropica 2010;113:180–189.
Montada D, Leyva M, Silva Y & Marquetti MC.. Susceptibilidad de 3 cepas de Aedes aegypti asociada con la aplicación de 3 insecticidas Rev Cubana Med Trop 2009;61(2).
Müller GJ, Lassmann H, Johansen FF Antiapoptotic signaling and failure of apoptosis in the ischemic rat hippocampus. Neurobiol Dis 2007;25:582–593
Napoleão TH, Pontual EV, Lima TA, Santos NDL, Sá RA, Coelho LCBB, Navarro DMAF, Paiva PMG Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae. Parasitol Res 2012;110:609–616
Nivsarkar M, Kumar GP, Laloraya M, Laloraya MM Superoxide dismutase in the anal gills of the mosquito larvae of Aedes aegypti : its inhibition by alpha-terthienyl. Arch Insect Biochem Physiol 1991;16: 249–255
OMS. Instrucciones para determinar la susceptibilidad o resistencia a insecticidas en larvas de mosquito. WHO/VBC/81.807
Ortego, F., J.F. Lopez-Olguin, M. Ruiz and P. Castanera. Effect of toxic and deterrent terpenoids on digestive proteases and detoxication enzyme activities of Colarado potato beetle larvae. Pest. Biochem. Physiol. 1999; 63: 76-84.
Panella NA, Dolan MC, Karchesy JJ, Xiong Y, Peralta-Cruz J, et al. Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oils components from heartwood of Alaska yellow cedar. J. Med. Entomol. 2005; 42 (3); 352-8.
Phasomkusolsil S, Soonwera M. Potential larvicidal and pupacidal activities of herbal essential oils against Culex quinquefasciatus say and Anopheles minimus (Theobald).Southeast. Asian J. Trop. Med. Public. Health. 2010; 41(6):1342-51.
Pitarokili D, Michaelakis A, Koliopoulos G, Giatropoulos A, Tzakou O.Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol. Res. 2011; 109(2):425-430.
Rattan RS Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection 2010:29 913e920
Ranson H & Hemingway J. 2004. Insect pharmacology and control: glutathione S-transferases, Oxford, UK, Elsevier.
Rodríguez M, Bisset J, Díaz C. & Soca A. Adaptación de los métodos en placas de microtitulación para la cuantificación de la actividad de esterasas y glutation-s-transferasa en Aedes aegypti. Rev Cubana Med Trop 2001;53, 32-6.
Rodríguez MM, Bisset JA, Pérez O, Montada D, Moya M; Ricardo Y, Valdés V..Estado de la resistencia a insecticidas y sus mecanismos en Aedes aegypti en el municipio Boyeros. Rev. Cubana Med. Trop. 2009;61(2).
Rodríguez MM, Bisset JA, RicardoY, Pérez O, Montada D, Figueredo D et al. Resistencia a insecticidas organofosforados en Aedes aegypti (Diptera: Culicidae) de Santiago de Cuba, 1997-2009. Rev. Cubana Med. Trop. 2010; 62(3):217-23
Roig JT. Diccionario botánico de nombres vulgares cubanos. Tercera Edición Editora del Consejo Nacional de Universidades.1965:1142pp
Ryan MF, Byrne O Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol 1988;14:1965–1975
Shanmugavelu M, Baytan AR,Chesnut SJ,Bonning BC. A novel protein that bindsjuvenile hormone esterase in fat body tissues and pericardial cells of the tobacco horn worm Manduca sexta L . J Biol Chem 2000; 275 :1802-1806
Seau-Rong L, Tan-Wei-Ann A, Wasi-Ahmad N, Ham-Lim L& Sofian-Azirum M. Insecticidal susceptibility status of field collected Aedes (Stegomya) aegypti (L) at dengue endemic site in Sham Alam Selengor Malasya . Southeast Asian Journal Tropical Medical Public Health 2012;43(1):34-47.
Schuler MA.. The role of cytochrome 450 monooxygenases in plant insect interactions. Plant Physiology 1996;112: 1411e1419
Tikar SN, Kumar A, Prasad GB & Prakash S.. Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitol Research 2009;105(1):57-63.
Tripathy A, Samanta L, Sachidananda D, Parida S, Marai n, Hazra RK, Mallavdani UV, Kar SK &Mahapatra N..The mosquitocidal activity of methanolic extracts of Lantana camara Root and anacardium occidentalle leaf: role of GST in insecticidal resistance. Journal Medical Entomology 2011;48(2):291-295.
Tong F ,Coats JR. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl− uptake in American cockroach ventral nerve cord. Pest. Biochem. Physiol 2010;98, 317–324
Tong F Bloomquist J . Plant essential oils affect toxicities of carbaryl and permethrin against Aedes aegypti (Diptera : Culicidae). J Medical entomol. 2013 50 (4):826-832
Vontas, J. G., G. J. Small, and J. Hemingway.. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem. J. 2001;357: 65-72.
Wadley L, Stevers Ch,Bamford M et al. Middle slone age bedding construction and settlement patterns of Sibudu South Africa . Sience. 2011;334(6061):1386-1391.
Waliwitiya R, Nicholson RA, Kennedy CJ, Lowenberger CA: The synergistic effects of insecticidal essential oils and piperonyl butoxide on biotransformational enzyme activities in Aedes aegypti (Diptera: Culicidae). J Med Entomol 2012, 49:614–623.
WHO (2012a) Impact of dengue. Global alert and response (GAR). http://www.who.int/csr/disease/dengue/impact/en/index.html.
WHO (2012b) Global strategy for dengue prevention and control 2012–2020. WHO, Geneva
WHO (2012c) Dengue and severe dengue. Factsheet no. 117. http://www. who.int/mediacentre/factsheets/fs117/en/.
WHO (2012d) Handbook for integrated vector management. WHO,Geneva
Yadav S, Mittal PK, Saxena PN, Singh RK: Effect of synergist piperonyl butoxide (PBO) on the toxicity of some essential oils against mosquito larvae. J Commun Dis 2009, 41:33–38.
Zelck, U. E., and V. B. Janowsky. Antioxidant enzymes in intramolluscan Schistosoma mansoni and ROS-induced changes in expression. Parasitology 2004; 128: 493-501.